首页> 外文OA文献 >Symmetric Gauss Legendre quadrature formulae for composite numerical integration over a tetrahedral region.
【2h】

Symmetric Gauss Legendre quadrature formulae for composite numerical integration over a tetrahedral region.

机译:对称高斯Legendre积分公式用于四面体区域上的复合数值积分。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper first presents a Gauss Legendre quadrature method for numerical integration of I ¼ R R\udT f ðx; yÞdxdy, where\udf(x,y) is an analytic function in x, y and T is the standard triangular surface: {(x,y)j0 6 x, y 6 1, x + y 6 1} in the Cartesian\udtwo dimensional (x,y) space. We then use a transformation x = x(n,g), y = y(n,g) to change the integral I to an equivalent\udintegral R R\udS f ðxðn; gÞ; yðn; gÞÞ oðx; yÞ\udoðn;gÞ dndg, where S is now the 2-square in (n,g) space: {(n,g)j 1 6 n,g 6 1}. We then\udapply the one dimensional Gauss Legendre quadrature rules in n and g variables to arrive at an efficient quadrature rule\udwith new weight coefficients and new sampling points. We then propose the discretisation of the standard triangular surface\udT into n2 right isosceles triangular surfaces Ti (i = 1(1)n2\ud) each of which has an area equal to 1/(2n2\ud) units. We have\udagain shown that the use of affine transformation over each Ti and the use of linearity property of integrals lead to the\udresult:\udI ¼ Xnn\udi¼1\udZ Z\udT i\udf ðx; yÞdxdy ¼ 1\udn2\udZ Z\udT\udHðX; Y ÞdX dY ;\udwhere HðX; Y Þ ¼ Pnn\udi¼1 f ðxiðX; Y Þ; yiðX; Y ÞÞ and x = xi(X,Y) and y = yi(X,Y) refer to affine transformations which map\udeach Ti in (x,y) space into a standard triangular surface T in (X,Y) space. We can now apply Gauss Legendre quadrature\udformulas which are derived earlier for I to evaluate the integral I ¼ 1\udn2\udRR\udT HðX; Y ÞdX dY . We observe that the above procedure\udwhich clearly amounts to Composite Numerical Integration over T and it converges to the exact value of the integral\udRR\udT f ðx; yÞdxdy, for sufficiently large value of n, even for the lower order Gauss Legendre quadrature rules. We have\uddemonstrated this aspect by applying the above explained Composite Numerical Integration method to some typical\udintegrals.
机译:本文首先提出了一种高斯勒格莱德正交方法,用于对I¼R R \ udTfðx进行数值积分。 yÞdxdy,其中\ udf(x,y)是x,y中的解析函数,T是标准三角形曲面:{(x,y)j0 6 x,y 6 1,x + y 6 1}在笛卡尔\二维(x,y)空间。然后我们使用变换x = x(n,g),y = y(n,g)将积分I更改为等效\ udintegral R R \ udS fðxðn; gÞ; yðn; gÞÞoðx; yÞ\udoðn;gÞdndg,其中S现在是(n,g)空间中的2平方:{(n,g)j 1 6 n,g 6 1}。然后,我们在n和g变量中应用一维高斯勒让德正交规则,以得到具有新权重系数和新采样点的有效正交规则。然后,我们建议将标准三角形曲面\ udT离散化为n2个等腰三角形曲面Ti(i = 1(1)n2 \ ud),每个曲面的面积等于1 /(2n2 \ ud)单位。我们已经\ udagain证明,在每个Ti上使用仿射变换和积分的线性特性会导致\ udresult:\ udI¼Xnn \udi¼1\ udZ Z \ udT i \ udfðx; yÞdxdy¼1 \ udn2 \ udZ Z \ udT \udHðX; YÞdXdY; \ udwhereHðX; Y¼¼Pnn \udi¼1fðxiðX; YÞ; yiðX; YÞÞ和x = xi(X,Y)和y = yi(X,Y)表示仿射变换,该仿射变换将(x,y)空间中的Ti映射到(X,Y)空间中的标准三角形曲面T。现在,我们可以应用为I导出的高斯Legendre正交\ udformulas来评估积分I¼1 \ udn2 \ udRR \ udTHðX; ÞdX dY。我们观察到上述过程\ ud显然等于T上的复合数值积分,并且收敛于整数\ udRR \ udT fðx的精确值; yÞdxdy,对于n足够大的值,即使对于低阶高斯勒让德正交规则也是如此。通过将上述解释的复合数值积分方法应用于一些典型的\ udintegrals,我们已经展示了这一方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号